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Abstract—Salient object detection aims to correctly highlight
the most salient object(s) in an image. Combining fine-grained
contrast prior with rough-grained object consistency, this paper
proposes a Focusness Guided Salient object detection (FGS)
algorithm. To obtain clean and precise contrast map, FGS uses
the focusness prior to guide the contrast map. Combing different
saliency priors, FGS utilizes a unified least-square framework to
generate the final optimal salient map. Experiments demonstrate
the proposed method outperforms the state-of-the-arts.

I. INTRODUCTION

Origins from visual attention, saliency detection can be
grouped into two different categories [1], [2]. The first one
is eye fixation prediction, emphasizing on highlighting the
points that human eyes prefer at first glance. The other is
salient object detection with the purpose of detecting the
most salient entire object(s) in an image. Compared with eye
fixation prediction, the task of salient object detection involves
some higher level attention beyond first glance. This is because
our eyes need complex cognition to identify the entire structure
and meaning of an “object”, instead of just some perceptual
sensitive points. This paper aims to correctly popping up the
complete salient object(s). Recently, salient object detection
greatly prompts the computer vision applications and also the
artificial intelligence tasks. Examples can be found in scene
parsing [2], automatic image cropping [3], object tracking [4],
object importance evaluation [5], image and video interesting-
ness [6], and human-mechine interaction [7].

The processing units for salient object detection can be
pixels, patches, superpixels, or regions. Salient object detection
is widely considered as capturing the uniqueness, or the rarity
of an image. And uniqueness is widely calculated as the pixel-
wise center-surround contrast [8]. To reduce the computation
cost from pixel-wise comparison, block/patche-based methods
are proposed [9]. However, the grid block/patch representation
lacks of adherence with actual object boundaries. Thus, it
severely reduces the performance of salient object detection
algorithms. To overcome this problem, superpixel (compact
superpixel) [10], [11] and/or rough region (uncompact super-
pixel) [12], [13] based methods emerge. Both of superpixels
and regions have advantage in capturing the object boundaries,
while reducing the computational cost by using smaller pro-
cessing units. And they vary in the following aspects: (1) su-
perpixel representation [14] advances in capturing bottom-up
saliency since they can evaluate the uniqueness in small scale;
(2) region representation [15], [16] benefits in identifying the
whole object(s), instead of just part of it(them).

Ever since the emergence of saliency detection, many empir-
ical priors and statistical models are exploited. The empirical
priors comes from psychology or neurobiology, engaging to
exploit the characteristics of human visual systems. Common
empirical priors have been widely used, and their effectiveness
is demonstrated. Among them, center-surround contrast [12],
[17], [18] is the most widely used cue. It insists that units that
have high contrast with their surroundings are salient. Besides,
background prior [19]–[21] is involved since units along image
borders are less likely to be salient. Foucsness [13], [22], [23]
is also a valuable cue which assumes that salient object should
be photographed in focus. Meantime, statistical models make
use of mathematical techniques to analyze natural images, and
to guide saliency detection. Examples are the gaussian mixture
model [14], the low rank model [20], the Bayesian inference
model [21], and many others.

Together with the previous bottom-up saliency cues, higher
level priors are also exploited. The most popular top-down
saliency prior is object prior. Objects vary rapidly in different
categories, thus, their properties are usually measured in super-
vised way, either category-dependent object detection mecha-
nism [24], or category-independent object classifiers [22] are
trained. The drawback for supervised object prior lies in the
cost from training.

Based on the above observations, we propose a Focusness
Guided Salient object detection (FGS) algorithm. Our contri-
butions are listed as follows:

• Combining fine-grained superpixels and rough regions,
FGS is able to mutually achieve precise salient priors.

• Using the focusness cue to guide the contrast map, FGS
can obtain object level consistency.

• Integrating the bottom-up salient priors and focusness
map, FGS utilizes a unified optimization framework to
generate the final optimal salient map.

II. FOCUSNESS GUIDED SALIENCY (FGS)

A. Algorithm Structure

The framework of FGS is illustrated in Fig. 1. Given an
input image I , first, it is segmented into two scales, fine-
grained superpixels and rough regions. The superpixels work
as atomic units to identify bottom-up contrast and background
probability, while the rough regions are used to detect the
focusness of objects in image. Based on the assumption that
the most salient objects usually capture the focused part on an
image, we further use the focusness map to guide the contrast
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Fig. 1: Flow chart of the proposed FGS algorithm.

map, overwhelming high contrast in unfocused regions. Thus,
it results in a more precise and cleaner foreground prior, that is,
the focusness guided contrast prior. Finally, the salient object
map is optimized combing the focusness guided contrast map
and the background probability map.

To formulate our problem, the following symbols are
adopted, {s1, s2, ..., sM} represents the superpixel segments,
{r1, r2, ..., rN} represents the rough regions.

B. Background Cue

The state-of-the-art salient object detection methods exploit
boundary cue to exclude the non-salient part of the image, and
thus, to avoid the false positive detection. The boundary cue
assumes that superpixels/regions lie on image borders are less
likely to be salient. Following the idea in [10], we exploit the
robust background connectivity prior on fine-grained super-
pixels {s1, s2, ..., sM} to measure the background probability.
For each superpixel si, the boundary connectivity is defined
as:

BonCon(si) =
L(si)

A(si)
, (1)

where L(·) and A(·) represent the length and spanning area
of a superpixel along the image border, respectively. Thus, the
background probability is measured using:

wbg(si) = 1− exp(−BonCon
2(si)

2σ2
BonCon

), (2)

where σ2
BonCon is the parameter that controls the influence of

BonCon on wbg . The background probability wbg is used as
our background cue. It is large when BonCon is large, and
vice versa.

C. Focusness Cue

Focusness cue claims that a salient object is often pho-
tographed in focus to attract human attention. Usually, fo-
cusness is measured from the degree of focal blur along the
edges of objects. Then, edge blur is spread to the whole
image. We exploit a fast and effective way to estimate the
focusness of images on a rough segmentation. The rough
regions {r1, r2, ..., rN} instead of the fine-grained superpixels
are used since the concept of focusness is highly connected
to objects, whereas, the fine-grained superpixels can hardly
provide object level consistency. The focusness {f(rp)}Np=1

can be measured in three steps: (1) pixel level edge strength

detection, then (2) focusness estimation on detected edges, and
finally, (3) region level focusness spread.

The focusness cue provides a rough estimation on the
focusness of objects in a image, however, it is prone to
generate high false positive estimation since we use very large
regions, greatly weakening the performance. To avoid this
problem, we make use of the background probability cue to
refine the focusness map. Our principle is that, background
regions are less likely to be focused, whereas, foreground
regions are preferred to be in focus. For {r1, r2, ..., rN}, we
calculate its background connectivity level {bg(rp)}Np=1 using
the average background probability from its composed pixels,
while the background probability of each pixel is set as its
corresponding superpixels. And then, we discard the regions
that are highly connected to image borders.

bg(rp) =

{
bg(rp), bg(rp) < T

0, bgrp = 0
(3)

where T = max{
∑
bg(rp)
2N , 0.2} is the threshold. Note that the

threshold T is set to be smaller than a fixed value 0.2 to avoid
much false negtive prediction. Finally, the region level refined
focusness {rf(rp)}Np=1 is achieved as:

rf(rp) = bg(rp) ∗ f(rp). (4)

D. Contrast Cue

The contrast cue, also called the center-surround cue, is
the most widely used approach to identify saliency [12],
[17], [18]. It is inspired from neuroscience that human eyes
prefer the “different” part of an image. Specifically, if a
unit is different (regarding to different features, e.g., color,
texture) from its surroundings, it should be salient. Such a
unit can be implemented by a pixel, a block, or a superpixel,
a region. Our contrast prior is constructed on fine-grained
superpixels {s1, s2, ..., sM}, according to color difference and
spatial distance:

Ctr(si) =

M∑
j=1

ws(si, sj)dc(si, sj), (5)

where ws(si, sj) is the spatial weight from superpixel sj to
si, and dc(sj , sj) is the color distance between si and sj . In
our experiments, color distance is calculated using the Lab
distance using CIE76 formula, and ws(si, sj) is set as:

ws(si, sj) = exp(−ds(si, sj)
2σ2

s

), (6)

where σ2
s is the spatial parameter. In our experiments, σs is

set to 0.4 so that we can mainly focus on the surrounding
superpixels within two or three layers.

E. Focusness Guided Contrast

For {s1, s2, ..., sM}, we calculate its focusness strength
{rfsi}Mi=1 with the average focusness values of its composed
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Fig. 3: The PR curve of different foreground priors.

pixels, and use them to guide (filter) the contrast. The guided
contrast is:

wfg(si) = rfCtr(si) = rf(si) ∗ Ctr(si). (7)

F. Optimization

Our objective function is constructed by minimizing the
energy of three components: namely, foreground term, back-
ground term, and a smooth term:

E =

M∑
i=1

w2
fg(si) +

M∑
i=1

w2
bg(si) +

M∑
i=1

M∑
j=1

w2
sm(si, sj), (8)

where the smooth term wsm(si, sj) is set as the Lab color
distance among each adjacent superpixel pair, and the adjacent
is calculated on a two layer neighborhood, together with the all
border superpixels as a connected layer. Note that wsm(si, sj)
is larger when si and sj share similar features, indicating
that similar superpixels should have close salient values; and
wsm(si, sj) is close to 0 when si and sj have distinct color
features. We enforce such a smooth only in a two layer
neighboring regions, this is different from the contrast cue,
which is measured on a larger (global) region. Minimizing
energy E using least-square optimization, we can obtain the
final salient map {ξ(si)}Mi=1.

III. EXPERIMENTS

To test the effectiveness of the proposed FGS, we use
four standard datasets, MSRA10K [25], SED2 [26], PASCAL-
S [27], and ECSSD [28]. Comparison metrics are the com-
monly used Precision-Recall (PR) curve, Receiver Operating
Characteristics (ROC) curve, Fβ measure, and Mean Absolute
Error (MAE) [29].

A. Evaluation of Focusness Guided Contrast

First, we evaluate the performance of the proposed fo-
cusness guided contrast cue (FC). The PR curve of dif-
ferent foreground cues are plotted in Fig. 3. We show the
effectiveness of Focusness (F ), Contrast (C), and three ways
to filter the contrast, namely, Background weighted Contrast
(BC), Focueness guided Contrast (FC), and Background and
Focusness weighted Contrast (BFC). The result shows that
FC outperforms the other foreground cues. We also provide a

TABLE I: MAE of different saliency detection algorithms.

FGS GMR HC RBD RC SF UFO

MSRA10K 0.1107 0.1257 0.2156 0.1083 0.1372 0.1753 0.1496
SED2 0.1118 0.1630 0.1932 0.1209 0.1478 0.1794 0.1803
PASCAL-S 0.1935 0.2330 0.3536 0.2013 0.3015 0.2533 0.2464
ECSSD 0.2206 0.2366 0.2562 0.2274 0.2351 0.2737 0.2558

TABLE II: Fβ of different saliency detection algorithms.

FGS GMR HC RBD RC SF UFO

MSRA10K 0.761 0.7657 0.5982 0.7607 0.6914 0.5565 0.6704
SED2 0.7595 0.7111 0.6477 0.7413 0.718 0.5835 0.636
PASCAL-S 0.5597 0.5589 0.3715 0.5542 0.3011 0.3812 0.4651
ECSSD 0.5928 0.6124 0.4165 0.5903 0.5823 0.4031 0.5106

visual comparison to show the performance of different cues
and their influence on the final salient maps in Fig. 2.

B. Comparison with the State-of-the-arts

Finally, we compare FGS with the state-of-the-arts. The
competing algorithms are: GMR [19], HC [12], RBD [10],
RC [12], SF [11], and UFO [13]. Fig. 4 illustrated the
statistical comparison of different algorithms on four different
datasets. For the PR curve, FGS outperforms the other methods
on the MSRA10K and SED2 datasets, while UFO has the
best PR curve on PASCAL-S, and RMR and RC have relative
better PR curves on ECSSD. As to the ROC curve, FGS
has the best results on all datasets. TABLE I and TABLE II
show the MAE and Fβ comparisons. Finally, the visualization
of different algorithms are presented in Fig. 5. As to the
computational cost, the proposed method can process an image
of size 400∗300 within 3s on a Core 3.40 GHz machine with
8 GB RAM.

IV. CONCLUSION

In this paper, we proposed a Focusness Guided Salient
object detection (FGS) algorithm. FGS exploits two different
processing scales, working mutually to generate clean and pre-
cise salient priors. The region-based focusness prior is used to
guide the contrast map, improving the detection performance
by implicitly incorporating object level consistency. Finally,
FGS integrates the contrast, background, and focusness priors
using a unified optimization framework to attain the final
optimal salient map. Experiments demonstrated the advantages
of FGS over the state-of-the-arts.
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Fig. 2: Visualization of different components and their effect on the final salient maps.
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Fig. 5: Visualization of different saliency detection algorithms on different datasets.
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